Search results for "Mitochondrial Proton-Translocating ATPases"
showing 3 items of 3 documents
Methylmercury-induced developmental toxicity is associated with oxidative stress and cofilin phosphorylation. Cellular and human studies
2017
Environmental exposure to methylmercury (MeHg) during development is of concern because it is easily incorporated in children’s body both pre- and post-natal, it acts at several levels of neural pathways (mitochondria, cytoskeleton, neurotransmission) and it causes behavioral impairment in child. We evaluated the effects of prolonged exposure to 10–600 nM MeHg on primary cultures of mouse cortical (CCN) and of cerebellar granule cells (CGC) during their differentiation period. In addition, it was studied if prenatal MeHg exposure correlated with altered antioxidant defenses and cofilin phosphorylation in human placentas (n = 12) from the INMA cohort (Spain). Exposure to MeHg for 9 days in v…
Correction: DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells
2015
Introduction Diabetes Associated Protein in Insulin-sensitive Tissues (DAPIT) is a subunit of mitochondrial ATP synthase and has also been found to associate with the vacuolar H+-ATPase. Its expression is particularly high in cells with elevated aerobic metabolism and in epithelial cells that actively transport nutrients and ions. Deletion of DAPIT is known to induce loss of mitochondrial ATP synthase but the effects of its over-expression are obscure. Results In order to study the consequences of high expression of DAPIT, we constructed a transgenic cell line that constitutively expressed DAPIT in human embryonal kidney cells, HEK293T. Enhanced DAPIT expression decreased mtDNA content and …
Morphological studies on CLN2
2001
Electron microscopic, fluorescence microscopic, and immunohistochemical studies earlier performed on archivalcerebral tissue from Max Bielchowsky's original three patients revealed curvilinear bodies rich in subunit C of mitochondrial ATP synthase (SCMAS). Recent progress in the elucidation of CLN2, i.e. identification of the defective lysosomal enzyme tripeptidyl-peptidase I (TPP-I) and mutations in the CLN2 gene have further corroborated earlier data. Immunohistochemically the absence of the TPP-I protein could be confirmed in the archival tissues using pathological controls. Unlike biochemistry, immunohistochemistry enables examination of these archival tissues elucidating the causative …